1,681 research outputs found

    A Bayesian method to estimate the depth and the range of phonating sperm whales using a single hydrophone

    Get PDF
    Some bioacousticians have used a single hydrophone to calculate the depth/range of phonating diving animals. The standard one-hydrophone localization method uses multipath transmissions (direct path, sea surface, and seafloor reflections) of the animal phonations as a substitute for a vertical hydrophone array. The standard method requires three multipath transmissions per phonation. Bioacousticians who study foraging sperm whales usually do not have the required amount of multipath transmissions. However, they usually detect accurately (using shallow hydrophones towed by research vessels) direct path transmissions and sea surface reflections of sperm whale phonations (clicks). Sperm whales emit a few thousand clicks per foraging dive, therefore researchers have this number of direct path transmissions and this number of sea surface reflections per dive. The author describes a Bayesian method to combine the information contained in those acoustic data plus visual observations. The author’s tests using synthetic data show that the accurate estimation of the depth/range of sperm whales is possible using a single hydrophone and without using any seafloor reflections. This method could be used to study the behavior of sperm whales using a single hydrophone in any location no matter what the depth, the relief, or the constitution of the seafloor might be

    PKS 1830-211: A Possible Compound Gravitational Lens

    Get PDF
    Measurements of the properties of gravitational lenses have the power to tell us what sort of universe we live in. The brightest known radio Einstein ring/gravitational lens PKS 1830-211 (Jauncey et al., 1991), whilst obscured by our Galaxy at optical wavelengths, has recently been shown to contain absorption at the millimetre waveband at a redshift of 0.89 (Wiklind and Combes, 1996a). We report the detection of a new absorption feature, most likely due to neutral hydrogen in a second redshift system at z = 0.19. Follow-up VLBI observations have spatially resolved the absorption and reveal it to cover the NE compact component and part of the lower surface brightness ring. This new information, together with existing evidence of the unusual VLBI radio structure and difficulties in modeling the lensing system, points to the existence of a second lensing galaxy along our line of sight and implies that PKS 1830-211 may be a compound gravitational lens.Comment: 8 pages, 2 figures, LaTeX (aasms4.sty). Accepted for publication in ApJ Letters. Preprint also available at http://kerr.phys.utas.edu.au/preprints

    2D-IR Study of a Photoswitchable Isotope-Labeled α-Helix

    Full text link
    A series of photoswitchable, α-helical peptides were studied using two-dimensional infrared spectroscopy (2D-IR). Single-isotope labeling with 13C18O at various positions in the sequence was employed to spectrally isolate particular backbone positions. We show that a single 13C18O label can give rise to two bands along the diagonal of the 2D-IR spectrum, one of which is from an amide group that is hydrogen-bonded internally, or to a solvent molecule, and the other from a non-hydrogen-bonded amide group. The photoswitch enabled examination of both the folded and unfolded state of the helix. For most sites, unfolding of the peptide caused a shift of intensity from the hydrogen-bonded peak to the non-hydrogen-bonded peak. The relative intensity of the two diagonal peaks gives an indication of the fraction of molecules hydrogen-bonded at a certain location along the sequence. As this fraction varies quite substantially along the helix, we conclude that the helix is not uniformly folded. Furthermore, the shift in hydrogen bonding is much smaller than the change of helicity measured by CD spectroscopy, indicating that non-native hydrogen-bonded or mis-folded loops are formed in the unfolded ensemble

    Variational data assimilation for the initial-value dynamo problem

    No full text
    The secular variation of the geomagnetic field as observed at the Earth's surface results from the complex magnetohydrodynamics taking place in the fluid core of the Earth. One way to analyze this system is to use the data in concert with an underlying dynamical model of the system through the technique of variational data assimilation, in much the same way as is employed in meteorology and oceanography. The aim is to discover an optimal initial condition that leads to a trajectory of the system in agreement with observations. Taking the Earth's core to be an electrically conducting fluid sphere in which convection takes place, we develop the continuous adjoint forms of the magnetohydrodynamic equations that govern the dynamical system together with the corresponding numerical algorithms appropriate for a fully spectral method. These adjoint equations enable a computationally fast iterative improvement of the initial condition that determines the system evolution. The initial condition depends on the three dimensional form of quantities such as the magnetic field in the entire sphere. For the magnetic field, conservation of the divergence-free condition for the adjoint magnetic field requires the introduction of an adjoint pressure term satisfying a zero boundary condition. We thus find that solving the forward and adjoint dynamo system requires different numerical algorithms. In this paper, an efficient algorithm for numerically solving this problem is developed and tested for two illustrative problems in a whole sphere: one is a kinematic problem with prescribed velocity field, and the second is associated with the Hall-effect dynamo, exhibiting considerable nonlinearity. The algorithm exhibits reliable numerical accuracy and stability. Using both the analytical and the numerical techniques of this paper, the adjoint dynamo system can be solved directly with the same order of computational complexity as that required to solve the forward problem. These numerical techniques form a foundation for ultimate application to observations of the geomagnetic field over the time scale of centuries

    Geotomography with solar and supernova neutrinos

    Get PDF
    We show how by studying the Earth matter effect on oscillations of solar and supernova neutrinos inside the Earth one can in principle reconstruct the electron number density profile of the Earth. A direct inversion of the oscillation problem is possible due to the existence of a very simple analytic formula for the Earth matter effect on oscillations of solar and supernova neutrinos. From the point of view of the Earth tomography, these oscillations have a number of advantages over the oscillations of the accelerator or atmospheric neutrinos, which stem from the fact that solar and supernova neutrinos are coming to the Earth as mass eigenstates rather than flavour eigenstates. In particular, this allows reconstruction of density profiles even over relatively short neutrino path lengths in the Earth, and also of asymmetric profiles. We study the requirements that future experiments must meet to achieve a given accuracy of the tomography of the Earth.Comment: 35 pages, 7 figures; minor textual changes in section

    Quasi-phase-matched generation of coherent extreme-ultraviolet light

    Get PDF
    Includes bibliographical references (page 54).High-harmonic generation is a well-known method of producing coherent extreme-ultraviolet (EUV) light, with photon energies up to about 0.5 keV. This is achieved by focusing a femtosecond laser into a gas, and high harmonics of the fundamental laser frequency are radiated in the forward direction. However, although this process can generate high-energy photons, efficient high-harmonic generation has been demonstrated only for photon energies of the order 50-100 eV. Ionization of the gas prevents the laser and the EUV light from propagating at the same speed, which severely limits the conversion efficiency. Here we report a technique to overcome this problem, and demonstrate quasi-phase-matched frequency conversion of laser light into EUV. Using a modulated hollow-core waveguide to periodically vary the intensity of the laser light driving the conversion, we efficiently generate EUV light even in the presence of substantial ionization. The use of a modulated fibre shifts the energy spectrum of the high-harmonic light to significantly higher photon energies than would otherwise be possible. We expect that this technique could form the basis of coherent EUV sources for advanced lithography and high-resolution imaging applications. In future work, it might also be possible to generate isolated attosecond pulses

    Helioseismic analysis of the hydrogen partition function in the solar interior

    Full text link
    The difference in the adiabatic gradient gamma_1 between inverted solar data and solar models is analyzed. To obtain deeper insight into the issues of plasma physics, the so-called ``intrinsic'' difference in gamma_1 is extracted, that is, the difference due to the change in the equation of state alone. Our method uses reference models based on two equations of state currently used in solar modeling, the Mihalas-Hummer-Dappen (MHD) equation of state, and the OPAL equation of state (developed at Livermore). Solar oscillation frequencies from the SOI/MDI instrument on board the SOHO spacecraft during its first 144 days in operation are used. Our results confirm the existence of a subtle effect of the excited states in hydrogen that was previously studied only theoretically (Nayfonov & Dappen 1998). The effect stems from internal partition function of hydrogen, as used in the MHD equation of state. Although it is a pure-hydrogen effect, it takes place in somewhat deeper layers of the Sun, where more than 90% of hydrogen is ionized, and where the second ionization zone of helium is located. Therefore, the effect will have to be taken into account in reliable helioseismic determinations of the astrophysically relevant helium-abundance of the solar convection zone.Comment: 30 pages, 4 figures, 1 table. Revised version submitted to Ap
    • …
    corecore